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FilmAffinity Recommender System Database and its Java 
Framework

ABSTRACT

The research process in the area regarding the collaborative 
filtering of recommender systems requires public databases 
to be available with which to experiment test equations and 
algorithms and compare results. In this paper, we present a 
new public database: FilmAffinity,  which will help to open 
up the possibilities for researchers to carry out comparative 
studies with the results of their experiments. 

In order to reinforce and facilitate understanding and use of 
the database we also provide a series of basic statistical 
results and common measurements of collaborative 
filtering which are used to compare this database with 
MovieLens and NetFlix.

We also publish a Java-based framework which will enable 
researchers to obtain results on recommender systems by 
extending their own metrics and user processes with the 
ease provided by object-oriented programming. 

INTRODUCTION

The basic principle of recommender systems (RS) is the 
expectation that the group of users similar to one given 
user, (i.e.  those that have rated an important number of 
elements in a similar way to the user) can be used to 
adequately predict that individual’s ratings on products the 
user has no knowledge of.  This way, a trip to Senegal could 
be recommended to an individual who has rated different 
destinations in the Caribbean very highly, based on the 
positive ratings about the holiday destination of “Senegal” 
of an important number of individuals who also rated 
destinations in the Caribbean very highly. This suggestion 
(recommendation) will often provide the user of the service 
with inspiring information from the collective knowledge 
of all other users of the service. 

In short, the internal operating core of RS is based on 
carrying out collaborative filtering (CF) [1,2] starting from 
the ratings expressed by a group of users about a group of 
items, the aim is to select users who have the most similar 
ratings or tastes to those of the individual who is using the 
system at any one time. In general, the objective is to 
suggest a series of elements to the individual, on which this 
individual have not shown a preference but which have 
been very highly rated by an important proportion of the 
group of users with similar preferences to the individual. 

The quality of the results offered by a RS greatly depends 
on the quality of the results provided by its CF [1] phase; 
i.e. it is essential to be capable of adequately selecting the 
group of users most similar to a given individual. 

CF memory-based methods [3,4,5] use metrics [2,5] that 
are directly applied to the data matrix that contains the 

ratings made by the set of users of the system on the set of 
items available. The current RS for commercial use employ 
memory-based methods due to their robustness, 
predictability and efficiency. 

Most of the process for research into the CF of RS requires 
the use of real databases with a sufficient size in order to 
test the new equations, methods and algorithms that the 
scientific community develops, and which could not be 
validated or perfected without the use of these databases.

An important aspect of scientific production on new 
methods of CF lies in the fact that the databases used are 
public with the aim of making them accessible to all 
researchers, in order to develop new recommendation 
algorithms and to be able to validate and extend those that 
emerge.

There are currently a very small number of databases used 
regularly by researchers. Table 1 shows a summary of their 
essential characteristics.

items users ratings

MovieLens 10681 71567 10000000

Book-
Crossing

271379 278858 1149780

NetFlix 17770 480189 100480507

Jester 100 19986 1810455

Table 1. Most widely used RS databases 

MovieLens [6] is historically the most widely used 
database in research; it comes from EachMovie. As of 
October, 2004, HP retired the EachMovie dataset,  it is no 
longer available for download. MovieLens is also available 
in the following sizes: 100,000 ratings for 1682 movies by 
943 users, 1 million ratings for 3900 movies by 6040 users.

Book-Crossing [7] was collected by Cai-Nicolas Ziegler  
(2004) from the Book-Crossing community.

NetFlix [8] is by far the largest database, which is an asset 
as regards validating research results, although its large 
size means it requires excessive calculation times in the 
process of developing and fine-tuning new CF algorithms.

The Jester online joke recommender system [9] presents 
the disadvantage of relying on too small a number of items, 
but it is useful when working with data matrices that are 
not very sparse.

In addition to the availability of public databases,  which is 
essential, it is convenient for frameworks to exist on which 
the scientific community can base its research on the CF of 
RS without the need for each person or research group to 
develop their own. 



Representative frameworks in the area of RS: 

• COFE (COllaborative Filtering Engine) [10], a 
f r ee J ava r ecommenda t ion eng ine fo r 
collaborative filtering. This free server (including 
source code) allows anyone to easily set up a 
recommendation system. 

• Duine [11] is a collection of software libraries that 
allows developers to create prediction engines for 
their own application. Duine has been developed 
by the Telematica Instituut/Novay.

• Small C++ framework [12] by Benjamin Meyer, 
created to be applied on NetFlix.

In the following sections of the paper we present the most 
important characteristics of the FilmAffinity public 
database and its associated framework, which we hope can 
be used to reinforce those that already exist and, in any 
case, to facilitate the experiments in which comparative 
results are displayed using the same algorithm on different 
databases.

THE FILMAFFINITY PUBLIC DATABASE 

FilmAffinity.com [13] is an on-line film recommendation 
company that currently has around 120,000 users and 30 
million votes. Its CF core has been developed at the UPM 
[14] by the AICU group [15], where the database and the 
associated Java framework can be downloaded.

Due to the company’s requirements, the database we 
provide for research currently contains 5 million votes, and 
no user information is provided. Even so, its size and 
technical characteristics are suitable for the research 
process in RS.

Its most relevant characteristics are summarized in Table 2.

Number of users 9257

Number of films 19970

Number of ratings 5333988

Min. and max. values of the ratings 1..10

Mean of the ratings 6.65

Typical deviation of the ratings 0.78

Minimum number of ratings (all the users) 51

Mean of the users ratings 576

Table 2. Most representative values of the FilmAffinity 
database for public use

The distribution of the votes is provided in the graph in 
Figure 1.

Figure 1. Number of existing votes in each of their possible 
values [1..10]

Figure 2 shows a comparative of the values of accuracy 
obtained with FilmAffinity using Pearson correlation 
compared to other film databases: MovieLens and NetFlix. 
It is very interesting to observe that FilmAffinity offers the 
best results of accuracy (fewer MAE errors) [1,2,5], and 
therefore, it is particularly interesting in order to test 
equations, methods and algorithms that aim to improve this 
highly important parameter of CF in RS.

Figure 2. Results of accuracy obtained for different values of 
k-neighborhoods (x axis) in different RS databases. In the case 
of FilmAffinity, its ratings have been previously normalized in 

the range [1..5]

Figure 3 shows us the estimation capability achieved using 
Pearson correlation in NetFlix, MovieLens and 
FilmAffinity. The estimation capability refers to the 
percentage of predictions that the k-neighborhoods can 
make.
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Figure 3. Percentage of estimation capability of FilmAffinity, 
MovieLens and NetFlix obtained for different values of k-

neighborhoods (x axis) 

In figure 3 we can observe that when the number k of 
neighbors is small the estimation capacity is low (it is more 
improbable that one of the few k-neighborhoods has voted 
for a given film) and therefore as we take larger values for 
k the estimation capacity grows as it becomes more 
probable that one of the many neighbors has voted for a 
given film.

The lower prediction capability of FilmAffinity is due to 
logical behavior related with the fact that using this 
database is possible to find more similar neighbors (which 
improve the measure of accuracy); the more similar the 
neighbors are to the test user, in general, not only will they 
have more similar vote values, but also they will have a 
greater tendency to vote for the same subset of the total 
films rated (the same genres, in the same years, etc.).

JAVA FRAMEWORK FOR RECOMMENDER SYSTEMS
Besides the database, in [15] a framework programmed in 
Java is provided which enables results to be obtained using 
the FilmAffinity database or any other equivalent RS. 
Indeed, FilmAffinity is provided in text mode, with the 
same format as MovieLens.  

This framework makes intensive use of the object-oriented 
characteristics of Java, enabling the developers to extend 
interfaces to create new metrics and their own user 
processes. Additionally, it has the advantage of single-
handedly recognizing the characteristics of the database 
and of the physical system (hardware) with the aim of 
adapting itself to the most effective processing mode, by 
automatically balancing the use of memory and disk space 
and deciding on the ideal number of threads to minimize 
the process time.

Figure 4 shows a general view of the system architecture, 
detailing the dependencies between its most representative 
objects.

Figure 4. RS Java framework software architecture

Table 3 provides a brief description of the utility of each of 
the most representative objects of the framework.

Java Object Description

User Contains each user data (ratings, etc.)

ArrayUsers Reads from file and stores the users

ArrayMetrics Compute and store the similarities
results for each couple of users

Recommender The main class. 

PartibleThreads Automatically manages all the threads.

Partible Java interface to implement user
processes

Metric Abstract class to implement your own
metrics.

MetricCorrelation Implements Pearson correlation

Neighbors Obtains the users k-neighborhoods
(from ArrayMetrics)

MAE Computes the MAE

Table 3. Description of the fundamental objects of the 
framework.

Finally, as an example, we include a program which, by 
using the framework, shows the way to obtain the MAE of 

the FilmAffinity database using 20% (0.2) as test users, the 
Pearson correlation metric and the k-neighborhoods values 
2,3,4,6, etc.

import recommender.*;

public class Demo {

public static void main(String[] args) {

ArrayUsers arrayUsers; Recommender recommender;

  

arrayUsers=new ArrayUsers("affinity.txt",0.2);

System.out.println("Number of users: " + 

arrayUsers.getNumberOfUsers());//...

  

recommender = new Recommender(arrayUsers);

recommender.process(new MetricCorrelation());

  



int ks[] = {2,3,4,6,8,12,16,24,32,48,64,96};

int kMax = ks[ks.length - 1];

recommender.process(new Neighbors(kMax));

for (int i = 0; i < ks.length; i++) {

    recommender.process(MAE(ks[i]));

 System.out.println("MAE:"+(Double)   

 arrayUsers.get("MAE"));

}}}

CONCLUSIONS

The availability of public databases is essential for the 
research process in the area of recommender systems, 
whilst free access to programming frameworks facilitates 
and accelerates the research and development of 
collaborative filtering cores. The scientific community now 
has a new database (FilmAffinity), as well as its associated 
programming framework.

The most outstanding characteristic of the FilmAffinity 
database is that it is a real commercial database that 
presents a lower level of accuracy than its better known 
references (MovieLens and NetFlix),  making it ideal for a 
large number of the objectives of collaborative filtering 
research.

The framework provided allows metrics and user processes 
to be extended with the simplicity that characterizes object-
oriented programming. 
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