
1

FilmAffinity Recommender System Database and its Java
Framework

ABSTRACT

The research process in the area regarding the collaborative
filtering of recommender systems requires public databases
to be available with which to experiment test equations and
algorithms and compare results. In this paper, we present a
new public database: FilmAffinity, which will help to open
up the possibilities for researchers to carry out comparative
studies with the results of their experiments.

In order to reinforce and facilitate understanding and use of
the database we also provide a series of basic statistical
results and common measurements of collaborative
filtering which are used to compare this database with
MovieLens and NetFlix.

We also publish a Java-based framework which will enable
researchers to obtain results on recommender systems by
extending their own metrics and user processes with the
ease provided by object-oriented programming.

INTRODUCTION

The basic principle of recommender systems (RS) is the
expectation that the group of users similar to one given
user, (i.e. those that have rated an important number of
elements in a similar way to the user) can be used to
adequately predict that individual’s ratings on products the
user has no knowledge of. This way, a trip to Senegal could
be recommended to an individual who has rated different
destinations in the Caribbean very highly, based on the
positive ratings about the holiday destination of “Senegal”
of an important number of individuals who also rated
destinations in the Caribbean very highly. This suggestion
(recommendation) will often provide the user of the service
with inspiring information from the collective knowledge
of all other users of the service.

In short, the internal operating core of RS is based on
carrying out collaborative filtering (CF) [1,2] starting from
the ratings expressed by a group of users about a group of
items, the aim is to select users who have the most similar
ratings or tastes to those of the individual who is using the
system at any one time. In general, the objective is to
suggest a series of elements to the individual, on which this
individual have not shown a preference but which have
been very highly rated by an important proportion of the
group of users with similar preferences to the individual.

The quality of the results offered by a RS greatly depends
on the quality of the results provided by its CF [1] phase;
i.e. it is essential to be capable of adequately selecting the
group of users most similar to a given individual.

CF memory-based methods [3,4,5] use metrics [2,5] that
are directly applied to the data matrix that contains the

ratings made by the set of users of the system on the set of
items available. The current RS for commercial use employ
memory-based methods due to their robustness,
predictability and efficiency.

Most of the process for research into the CF of RS requires
the use of real databases with a sufficient size in order to
test the new equations, methods and algorithms that the
scientific community develops, and which could not be
validated or perfected without the use of these databases.

An important aspect of scientific production on new
methods of CF lies in the fact that the databases used are
public with the aim of making them accessible to all
researchers, in order to develop new recommendation
algorithms and to be able to validate and extend those that
emerge.

There are currently a very small number of databases used
regularly by researchers. Table 1 shows a summary of their
essential characteristics.

items users ratings

MovieLens 10681 71567 10000000

Book-
Crossing

271379 278858 1149780

NetFlix 17770 480189 100480507

Jester 100 19986 1810455

Table 1. Most widely used RS databases

MovieLens [6] is historically the most widely used
database in research; it comes from EachMovie. As of
October, 2004, HP retired the EachMovie dataset, it is no
longer available for download. MovieLens is also available
in the following sizes: 100,000 ratings for 1682 movies by
943 users, 1 million ratings for 3900 movies by 6040 users.

Book-Crossing [7] was collected by Cai-Nicolas Ziegler
(2004) from the Book-Crossing community.

NetFlix [8] is by far the largest database, which is an asset
as regards validating research results, although its large
size means it requires excessive calculation times in the
process of developing and fine-tuning new CF algorithms.

The Jester online joke recommender system [9] presents
the disadvantage of relying on too small a number of items,
but it is useful when working with data matrices that are
not very sparse.

In addition to the availability of public databases, which is
essential, it is convenient for frameworks to exist on which
the scientific community can base its research on the CF of
RS without the need for each person or research group to
develop their own.

Representative frameworks in the area of RS:

• COFE (COllaborative Filtering Engine) [10], a
f r ee J ava r ecommenda t ion eng ine fo r
collaborative filtering. This free server (including
source code) allows anyone to easily set up a
recommendation system.

• Duine [11] is a collection of software libraries that
allows developers to create prediction engines for
their own application. Duine has been developed
by the Telematica Instituut/Novay.

• Small C++ framework [12] by Benjamin Meyer,
created to be applied on NetFlix.

In the following sections of the paper we present the most
important characteristics of the FilmAffinity public
database and its associated framework, which we hope can
be used to reinforce those that already exist and, in any
case, to facilitate the experiments in which comparative
results are displayed using the same algorithm on different
databases.

THE FILMAFFINITY PUBLIC DATABASE

FilmAffinity.com [13] is an on-line film recommendation
company that currently has around 120,000 users and 30
million votes. Its CF core has been developed at the UPM
[14] by the AICU group [15], where the database and the
associated Java framework can be downloaded.

Due to the company’s requirements, the database we
provide for research currently contains 5 million votes, and
no user information is provided. Even so, its size and
technical characteristics are suitable for the research
process in RS.

Its most relevant characteristics are summarized in Table 2.

Number of users 9257

Number of films 19970

Number of ratings 5333988

Min. and max. values of the ratings 1..10

Mean of the ratings 6.65

Typical deviation of the ratings 0.78

Minimum number of ratings (all the users) 51

Mean of the users ratings 576

Table 2. Most representative values of the FilmAffinity
database for public use

The distribution of the votes is provided in the graph in
Figure 1.

Figure 1. Number of existing votes in each of their possible
values [1..10]

Figure 2 shows a comparative of the values of accuracy
obtained with FilmAffinity using Pearson correlation
compared to other film databases: MovieLens and NetFlix.
It is very interesting to observe that FilmAffinity offers the
best results of accuracy (fewer MAE errors) [1,2,5], and
therefore, it is particularly interesting in order to test
equations, methods and algorithms that aim to improve this
highly important parameter of CF in RS.

Figure 2. Results of accuracy obtained for different values of
k-neighborhoods (x axis) in different RS databases. In the case
of FilmAffinity, its ratings have been previously normalized in

the range [1..5]

Figure 3 shows us the estimation capability achieved using
Pearson correlation in NetFlix, MovieLens and
FilmAffinity. The estimation capability refers to the
percentage of predictions that the k-neighborhoods can
make.

2

3

Figure 3. Percentage of estimation capability of FilmAffinity,
MovieLens and NetFlix obtained for different values of k-

neighborhoods (x axis)

In figure 3 we can observe that when the number k of
neighbors is small the estimation capacity is low (it is more
improbable that one of the few k-neighborhoods has voted
for a given film) and therefore as we take larger values for
k the estimation capacity grows as it becomes more
probable that one of the many neighbors has voted for a
given film.

The lower prediction capability of FilmAffinity is due to
logical behavior related with the fact that using this
database is possible to find more similar neighbors (which
improve the measure of accuracy); the more similar the
neighbors are to the test user, in general, not only will they
have more similar vote values, but also they will have a
greater tendency to vote for the same subset of the total
films rated (the same genres, in the same years, etc.).

JAVA FRAMEWORK FOR RECOMMENDER SYSTEMS
Besides the database, in [15] a framework programmed in
Java is provided which enables results to be obtained using
the FilmAffinity database or any other equivalent RS.
Indeed, FilmAffinity is provided in text mode, with the
same format as MovieLens.

This framework makes intensive use of the object-oriented
characteristics of Java, enabling the developers to extend
interfaces to create new metrics and their own user
processes. Additionally, it has the advantage of single-
handedly recognizing the characteristics of the database
and of the physical system (hardware) with the aim of
adapting itself to the most effective processing mode, by
automatically balancing the use of memory and disk space
and deciding on the ideal number of threads to minimize
the process time.

Figure 4 shows a general view of the system architecture,
detailing the dependencies between its most representative
objects.

Figure 4. RS Java framework software architecture

Table 3 provides a brief description of the utility of each of
the most representative objects of the framework.

Java Object Description

User Contains each user data (ratings, etc.)

ArrayUsers Reads from file and stores the users

ArrayMetrics Compute and store the similarities
results for each couple of users

Recommender The main class.

PartibleThreads Automatically manages all the threads.

Partible Java interface to implement user
processes

Metric Abstract class to implement your own
metrics.

MetricCorrelation Implements Pearson correlation

Neighbors Obtains the users k-neighborhoods
(from ArrayMetrics)

MAE Computes the MAE

Table 3. Description of the fundamental objects of the
framework.

Finally, as an example, we include a program which, by
using the framework, shows the way to obtain the MAE of

the FilmAffinity database using 20% (0.2) as test users, the
Pearson correlation metric and the k-neighborhoods values
2,3,4,6, etc.

import recommender.*;

public class Demo {

public static void main(String[] args) {

ArrayUsers arrayUsers; Recommender recommender;

arrayUsers=new ArrayUsers("affinity.txt",0.2);

System.out.println("Number of users: " +

arrayUsers.getNumberOfUsers());//...

recommender = new Recommender(arrayUsers);

recommender.process(new MetricCorrelation());

int ks[] = {2,3,4,6,8,12,16,24,32,48,64,96};

int kMax = ks[ks.length - 1];

recommender.process(new Neighbors(kMax));

for (int i = 0; i < ks.length; i++) {

 recommender.process(MAE(ks[i]));

 System.out.println("MAE:"+(Double)

 arrayUsers.get("MAE"));

}}}

CONCLUSIONS

The availability of public databases is essential for the
research process in the area of recommender systems,
whilst free access to programming frameworks facilitates
and accelerates the research and development of
collaborative filtering cores. The scientific community now
has a new database (FilmAffinity), as well as its associated
programming framework.

The most outstanding characteristic of the FilmAffinity
database is that it is a real commercial database that
presents a lower level of accuracy than its better known
references (MovieLens and NetFlix), making it ideal for a
large number of the objectives of collaborative filtering
research.

The framework provided allows metrics and user processes
to be extended with the simplicity that characterizes object-
oriented programming.

ACKNOWLEDGMENTS

Our acknowledgement to the GroupLens Research Group,
and to the FilmAffinity and NetFlix companies.

REFERENCES

1.Adomavicius, Tuzhilin, A. Toward the Next Generation
of Recommender Systems: a survey of the state-of-the-
art and possible extensions, IEEE Transactions on
Knowledge and Data Enginnering, vol. 17, no. 6, (June
2005), 734-749

2.Herlocker, J. L., Konstan, J.A., Riedl, J.T., Terveen, L.G.
Evaluating Collaborative Filtering Recommender
Systems, ACM Transactions on Information Systems,
vol. 22, no. 1, (January 2004), 5-53

3.Breese, J.S., Heckerman, D., Kadie, C. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering, in Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, Morgan
Kaufmann, 1998, 43-52

4.Kong, F., Sun, X., Ye, S. A Comparison of Several
Algorithms for Collaborative Filtering in Startup Stage,
In Proceedings of the IEEE networking, sensing and
control, (March 2005), 25-28

5.Sanchez, J.L., Serradilla F., Martinez E. & Bobadilla, J.
Choice of Metrics used in Collaborative Filtering and
their Impact on Recommender Systems, in Proceedings
of the IEEE International Conference on Digital

Ecosystems and Technologies DEST, (February 2008) ,
432 – 436, Digital Object Identifier 10.1109/DEST.
2008.4635147.

6.http://www.movielens.org

7.http://www.informatik.uni-freiburg.de/~cziegler/BX/

8.www.netflixprize.com

9.http://www.ieor.berkeley.edu/~goldberg/jester-data/

10.http://eecs.oregonstate.edu/iis/CoFE/

11.http://duineframework.org/

12.http://github.com/icefox/

 netflixrecommenderframework/tree/master

13.http://www.filmaffinity.com

14.http://www.upm.es

15.http://aicu.eui.upm.es/aicu/doku.php?id=english

4

